2011年7月24日星期日

LP UCLA

www.ee.ucla.edu/ee236a/src/lp236a_mtlb.m



Software

  • Matlab The Matlab LP solver is called linprog and is included in the optimization toolbox. Students who don’t have the optimization toolbox can request a free semester license of the MOSEK optimization tools for Matlab (Click on “Trial license” in the left column of the MOSEK home page). MOSEK includes an LP solver linprog with the same calling sequence as Matlab’s linprog. You can also use the routine lp236a.m, a pure Matlab implementation of a primal-dual method. This code is less efficient and reliable than the MOSEK solver, but should be adequate for the purposes of this course. The following Matlab packages allow you to specify and solve LPs using a very simple and intuitive description format:CVX (which includes the necessary solver) and YALMIP.
  • Octave Octave users can download the Octave version of lp236a.m.
  • Python Python users can download the CVXOPT package, which includes an LP solver and modeling support.





function [x,s,z,y,status] = lp236a(c,G,h,A,b,varargin)


% [x,s,z,y,status] = lp236a(c,G,h,A,b,x0,s0,y0,z0)
%
% Matlab LP solver for use in EE236A, Fall 2005 Quarter. 
%
% Solves the primal-dual pair of LPs
%
%    minimize    c'*x              maximize    -h'*z - b'*y
%    subject to  G*x + s = h       subject to  G'*z + A'*y + c = 0
%                A*x = b                       z >= 0.
%                s >= 0
%
% Input arguments
% c         n-vector
% G         mxn-matrix with m >= 1; may be sparse or full
% A         pxn-matrix with p >= 0; may be sparse or full
% h         m-vector
% b         p-vector
% x0, s0    (optional) primal starting point; must satisfy s0>0
%           If x0=s0=[], x0=0, s0=1 is used.
% y0, z0    (optional) dual starting point; must satisfy z0>0
%           If y0=z0=[], y0=0, z0=1 is used.
%
% Output arguments
% x,s,y,z:  the primal and dual optimal solutions, or certificates of
%           primal/dual infeasibility.
% status:   string with possible values 'optimal', 'primal infeasible',
%           'dual infeasible', 'unknown'.
%
% We require Rank(A) = p and Rank([G;A]) = n.  In other words, 
% the matrix [0, A; A', G'*G] must be nonsingular.
%
% The following calling sequences are also valid:
%     [x,s,z,y,status] = lp236a(c,G,h,A,b) means the same as
%         [x,s,z,y,status] = lp236a(c,G,h,A,b,[],[],[],[]);
%
%     [x,s,z,y,status] = lp236a(c,G,h,A,b,x0,s0) means the same as
%         [x,s,z,y,status] = lp236a(c,G,h,A,b,x0,s0,[],[]);
%
% If status is `optimal': 
%     s>=0, z>=0
%     and ||G*x+s-h||/max{1,||h||} <= 1e-8
%     and ||A*x-b||/max{1,||b||} <= 1e-8
%     and ||G'*z+A'*y+c||/max{1,||c||} <= 1e-8
%     and ( c'*x+h'*y+b'*z <= 1e-8
%         or (h'*z+b'*z < 0  and c'*x+h'*y+b'*z/(-h'*y-b'*z) <= 1e-8)
%         or (c'*x < 0  and c'*x+h'*y+b'*z/(-c'*x) <= 1e-8))
%
% If status is `primal infeasible', x=s=[] and y,z are a proof of primal
%     infeasibility:
%     z>=0  and ||G'*z + A'*y|| <= 1e-8 and h'*z + b'*y = -1.
%
% If status is `dual infeasible':  y=z=[] and x,s is a proof of dual
%     infeasibility:
%     s>=0  and ||G*x + s|| <= 1e-8 and ||A*x|| <= 1e-8 and c'*x = -1.
%
% If status is `unknown', the algorithm was unable to classify the
%     LP, or the maximum number of iterations was exceeded, and
%     x=s=y=z=[].
%
%
% (Lieven Vandenberghe, September 2005)


% SELF-DUAL EMBEDDING
%
% The primal and dual LPs are embedded in a self-dual LP with two
% additional variables tau, theta, and one extra slack variable lambda:
%
% minimize    rc*theta
% subject to  [ 0    h'   b'   c'  ro ][ tau ]   [lambda]   [ 0 ]
%             [-h    0    0    G   ri ][  z  ]   [  s   ]   [ 0 ]
%             [-b    0    0    A   re ][  y  ] + [  0   ] = [ 0 ]
%             [-c   -G'  -A'   0   rd ][  x  ]   [  0   ]   [ 0 ]
%             [-ro  -ri' -re' -rd' 0  ][theta]   [  0   ]   [ rc]
%             tau >= 0,  z >= 0,  lambda >= 0,  s >= 0
%   
% with
%     rc = 1 + z0'*s0
%     ri = h - G*x0 - s0
%     re = b - A*x0
%     rd = c + G'*z0 + A'*y0
%     ro = -(c'*x0 + h'*z0 + b'*y0 + 1)
%
% Properties:
%
% 1. If s0 > 0, z0 > 0, then tau = theta = lambda = 1, z = z0, y = y0,
%    x = x0, s = s0 are strictly feasible.
%
% 2. The optimal value is zero.  The optimal solutions satisfy
%    the complementarity conditions tau*lambda = 0, z'*s = 0.
%
% 3. If tau > 0 at the optimum, then lambda = 0, and
%    x/tau, s/tau, z/tau, y/tau are primal and dual optimal
%    for the original pair of LPs.
%
% 4. If tau = 0 and lambda > 0 at the optimum, and c'*x < 0,
%    then the problem is dual infeasible and x is a certificate.
%
% 5. If tau = 0 and lambda > 0 at the optimum, and h'*z + b'*y < 0,
%    then the problem is primal infeasible and y,z are a certificate.
%
% 6. The central path, defined as the set of feasible solutions
%    that satisfy tau*lambda = mu, z.*s = mu, converges to a strictly
%    complementary solution (in particular, one with tau+lambda > 0).


% ALGORITHM
%
% The self-dual problem is an LCP
%
%     C*u + D*v + w = f
%     -D'*u + E*v   = g
%     u'*w = 0 
%     u >= 0,  v >= 0 
%
% with
%     u = [tau; z],  v = [y; x; theta],  w = [lambda; s]
%     f = [0; 0],  g = [0; 0; rc]   
%     C = [0, h'; -h, 0]
%     D = [b', c', ro;  0, G, ri] 
%     E = [0, A, re; -A', 0, rd; -re', -rd', 0]
%
% We solve the LCP using a predictor-corrector method to follow
% the central path, which is defined by
%
%    C*u + D*v + w = f
%    -D'*u + E*v   = g
%    u.*w = mu 
%    u > 0, w > 0 
%
% 1. Start at strictly feasible points
%
% 2. Compute affine scaling directions
%
%    C*dua + D*dva  + dwa = 0
%    -D'*dua + E*dva      = 0
%    u.*dwa + w.*dua      = -u.*w
%
% 3. Determine suitable mu
%
% 4. Compute centering-corrector directions
%
%    C*duc + D*dvc + dw = 0
%    -D'*duc + E*dvc    = 0
%    u.*dwc + w.*duc    = mu - dua.*dwc
%
% 5. Update u,v,w


SHOWPROGRESS = 0;
MAXITERS = 100;
ABSTOL = 1e-8;
RELTOL = 1e-8;
FEASTOL = 1e-8;
MINSLACK = 1e-8;     
STEP = 0.99;
EXPON = 3;

if size(c,2) ~= 1,  c=c';  end;
n = size(c,1);
if size(G,2) ~= n | (~isempty(A) & size(A,2) ~= n)
    error('Dimensions of c, A, G do not match.');
end;
if size(h,2) ~= 1,  h=h';  end;
m = size(h,1);
if size(G,1) ~= m
    error('Dimensions of G and h do not match.');
end;  
if size(b,2) ~= 1,  b=b';  end;
p = size(b,1);
if ~isempty(A)
    if size(A,1) ~= p,
        error('Dimensions of A and b do not match.');
    end;  
else
    A = zeros(0,n);
    b = zeros(0,1);
end;

sparselp = issparse(A) & issparse(G);

if nargin == 5
    x = zeros(n,1); 
    s = ones(m,1); 
    z = ones(m,1);
    y = zeros(p,1);
end;
if nargin == 6
    error('Give x0 and s0 to specify primal starting point.');
end;
if nargin >= 7
    x = varargin{1}; 
    s = varargin{2};
    z = ones(m,1);  
    y = zeros(p,1);
    if xor(isempty(x), isempty(s))
        error('Give x0 and s0 to specify primal starting point.');
    end;
    if isempty(x)
        x = zeros(n,1); 
        s = ones(m,1); 
    end;
    if min(s) < MINSLACK
        error('s0 must be positive.');
    end;
end;
if nargin == 8
    error('Give y0 and z0 to specify dual starting point.');
end;
if nargin == 9
    y =  varargin{3}; 
    z =  varargin{4};
    if p>0
        if xor(isempty(y), isempty(z))
            error('Give y0 and z0 to specify dual starting point.');
        end;
    end;
    if isempty(y) 
        y = zeros(p,1); 
        z = ones(m,1); 
    end;
    if min(z) < MINSLACK
        error('z0 must be positive.');
    end;
end
if (nargin > 9)
    error('Too many input arguments.');
end;

rc = 1+z'*s;
ri = h-G*x-s;
re = b-A*x;
rd = c+G'*z+A'*y;
ro = -(c'*x+h'*z+b'*y+1);

nrmh = max([1,norm(h)]);
nrmb = max([1,norm(b)]);
nrmc = max([1,norm(c)]);

tau = 1;
lambda = 1;
theta = 1;
u = [tau; z];  dimu = m+1;
v = [y; x; theta];  dimv = p+n+1;
w = [lambda; s];  dimw = m+1;

if p == 0 & issparse(G)
    perm = symmmd(G'*G);
else
    perm = [];
end;  


if SHOWPROGRESS
    disp(sprintf('\n%16s%14s', 'duality gap', 'residuals'));
    disp(sprintf('%9s%8s%10s%6s', 'abs.', 'rel.', 'primal', 'dual'));
end

for iters = 1:MAXITERS

    tau = u(1);  z = u(1+[1:m]);
    y = v(1:p);  x = v(p+[1:n]);  theta = v(p+n+1);
    lambda = w(1);  s = w(1+[1:m]);


    % STOPPING CRITERION

    pcost = c'*x/tau; 
    dcost = -(h'*z + b'*y)/tau; 
    absgap = u'*w/(tau*tau);
    if dcost > 0
        relgap = absgap/dcost;
    elseif pcost < 0
        relgap = absgap/(-pcost);
    else
        relgap = Inf;
    end;
    hresi = G*x+s;  resi = h - hresi/tau;
    hrese = A*x;  rese = b-hrese/tau;
    hresd = G'*z + A'*y;  resd = c+hresd/tau;
    pres = max([norm(resi)/nrmh, norm(rese)/nrmb]);
    dres = norm(resd)/nrmc;
    hpres = max([norm(hresi), norm(hrese)]);
    hdres = norm(hresd);
   
    if SHOWPROGRESS
        disp(sprintf('%2d:% 7.0e% 8.0e% 8.0e% 8.0e ', ...
            iters-1, absgap, relgap, pres, dres));
    end;

    if pres <= FEASTOL & dres <= FEASTOL & (absgap <= ABSTOL | ...
        relgap <= RELTOL)

        status='optimal';
        x = x/tau;  s = s/tau;
        z = z/tau;  y = y/tau;
        return;

    elseif h'*z+b'*y < 0 & hdres/abs(h'*z+b'*y) <= FEASTOL

        status = 'primal infeasible';
        x = [];  s = [];
        t = abs(h'*z+b'*y);
        z = z/t;  y = y/t;
        return;

    elseif c'*x < 0 & hpres/abs(c'*x) <= FEASTOL

        status = 'dual infeasible';
        t = abs(c'*x);
        x = x/t;  s = s/t;
        z = []; y = [];
        return;

    end;

    
    % FACTORIZATION
    %
    % We will need to solve two sets of equations
    %
    %            S*dz                                 + Z*ds       = r1
    %  lambda*dtau                                    + tau*dlambda= r2
    %            h'*dz  + b'*dy  + c'*dx  + ro*dtheta + dlambda    = r3
    %  -h*dtau                   + G*dx   + ri*dtheta + ds         = r4
    %  -b*dtau                   + A*dx   + re*dtheta              = r5
    %  -c*dtau - G'*dz  - A'*dy           + rd*dtheta              = r6
    % -ro*dtau - ri'*dz - re'*dy - rd'*dx                          = r7
    %
    % with different righthand sides.
    %
    % We will do this by solving
    %
    % [-Z\S  0   G] [dz]   [-h  ri] [dtau  ]   [r4-Z\r1]
    % [  0   0   A]*[dy] + [-b  re]*[      ] = [  r5   ]
    % [  G'  A'  0] [dx]   [ c -rd] [dtheta]   [ -r6   ]
    %
    %  [-h' -b' -c'] [dz]   [-lambda/tau ro]  [dtau  ]   [r3-r2/tau]
    % -[           ]*[dy] + [              ]* [      ] = [         ]
    %  [ri' re' rd'] [dx]   [     -ro    0 ]  [dtheta]   [   r7    ]
    %
    % and taking  ds = Z\(r1-S*dz), dlambda = (r2-lambda*dtau)/tau
    %
    % Write the 2x2 block system as
    %
    %   H11*dX1 + H12*dX2 = G1
    %   H21*dX1 + H22*dX2 = G2.
    %
    % We solve this by elimination: first solve
    %
    %  (H22 - H21*(H11\H12)) * dX2 = G2 - H21*(H11\G1)
    %
    % and take dX1 = H11\G1 - (H11\H12)*dX2
    %
    % To prepare for all of this, we factor the matrix
    %
    %       [-S/Z  0   G]
    % H11 = [  0   0   A]
    %       [  G'  A'  0]
    %
    % then solve for H11\H12, and compute H22 - H21*(H11\H12).


    % factor H11 = [-S/Z, 0, G; 0, 0, A; G',A', 0]
    fac = kkt_fac(s./z,G,A,perm);  
    if isempty(fac)
        if iters == 1
            error('Rank(A) < p or Rank(A;G) < n');
        else
            error('KKT matrix is singular.');
        end;
    end;

    % compute [Gz; Gy; Gx] = H11 \ H12
    [solx1,soly1,solz1] =  kkt_sol(s./z,G,A,fac,c,-b,-h,perm);
    [solx2,soly2,solz2] =  kkt_sol(s./z,G,A,fac,-rd,re,ri,perm);
    Gx = [solx1 solx2];
    Gy = [soly1 soly2];
    Gz = [solz1 solz2];

    % compute T = H22 - H21*(H11\H12)
    T = [-lambda/tau, ro; -ro, 0] + ...
        [-h', -b', -c'; ri', re', rd'] * [Gz;Gy;Gx];


    % COMPUTE AFFINE SCALING STEP 
    %
    % [-Z\S  0   G] [dz]   [-h  ri] [dtau  ]   [r4-Z\r1]
    % [  0   0   A]*[dy] + [-b  re]*[      ] = [  r5   ]
    % [  G'  A'  0] [dx]   [ c -rd] [dtheta]   [ -r6   ]
    %
    %  [-h' -b' -c'] [dz]   [-lambda/tau ro]  [dtau  ]   [r3-r2/tau]
    % -[           ]*[dy] + [              ]* [      ] = [         ]
    %  [ri' re' rd'] [dx]   [     -ro    0 ]  [dtheta]   [   r7    ]
    %
    % ds = (r1-s.*dz)./z;
    % dlambda = (r2-lambda*dtau)/tau;
    %
    % with
    %
    %  r1 = -s.*z
    %  r2 = -tau*lambda
    %  r3 = -(h'*z + b'*y + c'*x + ro*theta + lambda)
    %  r4 = -(-h*tau + G*x + ri*theta + s)
    %  r5 = -(-b*tau + A*x + re*theta)
    %  r6 = -(-c*tau - G'*z - A'*y + rd*theta)
    %  r7 = rc - (-ro*tau - ri'*z - re'*y - rd'*x)

    r1 = -s.*z;
    r2 = -tau*lambda;
    r3 = -(h'*z + b'*y + c'*x + ro*theta + lambda);
    r4 = -(-h*tau + G*x + ri*theta + s);
    r5 = -(-b*tau + A*x + re*theta);
    r6 = -(-c*tau - G'*z - A'*y + rd*theta);
    r7 = rc - (-ro*tau - ri'*z - re'*y - rd'*x);
    [dx1,dy1,dz1] = kkt_sol(s./z,G,A,fac,-r6,r5,r4-r1./z,perm);
    sol = T \ ([r3-r2/tau;r7] + ...
          [-h' -b' -c'; ri' re' rd'] * [dz1;dy1;dx1]);
    dz = dz1 - Gz*sol;
    dy = dy1 - Gy*sol;
    dx = dx1 - Gx*sol;
    dtau = sol(1);
    dtheta = sol(2);
    ds = (r1-s.*dz)./z;
    dlambda = (r2-lambda*dtau)/tau;
    du = [dtau; dz];
    dv = [dy; dx; dtheta];
    dw = [dlambda; ds];


    % COMPUTE STEP TO BOUNDARY 
  
    step = 1/max([-du./u; -dw./w]);
    mu = (u'*w)/(m+1);
    muaff = (u + step*du)'*(w + step*dw)/(m+1);
    sigma = (muaff/mu)^EXPON;


    % COMPUTE CENTERING-CORRECTOR STEP 
    %
    % [-Z\S  0   G] [dz]   [-h  ri] [dtau  ]   [r4-Z\r1]
    % [  0   0   A]*[dy] + [-b  re]*[      ] = [  r5   ]
    % [  G'  A'  0] [dx]   [ c -rd] [dtheta]   [ -r6   ]
    %
    %  [-h' -b' -c'] [dz]   [-lambda/tau ro]  [dtau  ]   [r3-r2/tau]
    % -[           ]*[dy] + [              ]* [      ] = [         ]
    %  [ri' re' rd'] [dx]   [     -ro    0 ]  [dtheta]   [   r7    ]
    %
    % ds = (r1-s.*dz)./z;
    % dlambda = (r2-lambda*dtau)/tau;
    %
    % with
    %
    %  r1 = sigma*mu - dsa.*dza
    %  r2 = sigma*mu - dtaua*dlambdaa
    %  r3 = 0
    %  r4 = 0
    %  r5 = 0
    %  r6 = 0
    %  r7 = 0

    r1 = sigma*mu - ds.*dz;
    r2 = sigma*mu - dtau*dlambda;
    r3 = zeros(size(r3));
    r4 = zeros(size(r4));
    r5 = zeros(size(r5));
    r6 = zeros(size(r6));
    r7 = zeros(size(r7));
    [dx1,dy1,dz1] = kkt_sol(s./z,G,A,fac,-r6,r5,r4-r1./z,perm);
    sol = T \ ([r3-r2/tau;r7] + ...
          [-h' -b' -c'; ri' re' rd'] * [dz1;dy1;dx1]);
    dzc = dz1 - Gz*sol;
    dyc = dy1 - Gy*sol;
    dxc = dx1 - Gx*sol;
    dtauc = sol(1);
    dthetac = sol(2);
    dsc = (r1-s.*dzc)./z;
    dlambdac = (r2-lambda*dtauc)/tau;
    duc = [dtauc; dzc];
    dvc = [dyc; dxc; dthetac];
    dwc = [dlambdac; dsc];


    % COMPUTE STEPS, STEP LENGTHS AND UPDATE

    du = du+duc;  dv = dv+dvc;   dw = dw+dwc; 
    step = min(STEP/max([-du./u; -dw./w]), 1.0);
    u = u + step*du;  v = v + step*dv;  w = w + step*dw;

end;

disp(['Maximum number of iterations exceeded.']);
status = 'unknown';
x=[];  s=[];  y=[];  z=[]; 


function fac = kkt_fac(d,G,A,varargin)

% fac = kkt_fac(d,G,A,[]);
% fac = kkt_fac(d,G,A);
%
%             [-diag(d)  0  G ]
% Factors K = [   0      0  A ]
%             [   G'     A' 0 ]
%
%
% fac = kkt_fac(d,G,A,perm);
%
%          [  -diag(d)      0       G(:,perm) ]
% factors  [     0          0       A(:,perm) ]
%          [  G(:,perm)' A(:,perm)'    0      ]
%
%
% Input arguments:
% -  d:  m-vector, with m>=1.  Must have positive elements.  
% -  G:  mxn, with m>=1 and n >= 1.
% -  A:  pxn, with p>=1, or an empty matrix
% -  perm:  (optional) permutation vector of length n.
%
%
% Output argument is a structure fac.
%
% - If K is singular, fac = [].
%
% - If p=0 and K is nonsingular, then fac.F is the cholesky factor R
%   in G'*diag(1./d)*G = R'*R.  
%   L is sparse if G and A are sparse, and full otherwise.
%
% - If p>0, K is nonsingular, and A or G are full, then fac.L, fac.U,
%   fac.P are the LU factors of the matrix
%   [ 0, A; A', G'*diag(1./d)*G ] = P'*L*U
%   P is a permutation matrix, stored as a sparse matrix,
%   L and U are full.
%
% - If p>0, K is nonsingular, and A and G are sparse, then
%   fac.L, fac.U, fac.P, fac.Q are the LU factors of the matrix
%   [ 0, A; A', G'*diag(1./d)*G ] = P'*L*U*Q'
%   P and Q are permutation matrices.  P, Q, L and U are sparse.


RANKTOL = 1e-10;  % triangular U is singular if min(|U(i,i)|) < RANKTOL
MINSLACK = 0.0;   % d(i) must be greater than MINSLACK

if size(d,2) ~= 1
    d=d';
end;  
m = size(d,1);
if min(d) <= MINSLACK
    error('Elements of d must be positive.');
end;
if size(G,1) ~= m
    error('Dimensions of G and d do not match.');
end;  
if m < 1
    error('G must have at least one row.');
end;

n = size(G,2);
if ~isempty(A) & (size(A,2) ~= n)
    error('Dimensions of A and G do not match.');
end;
p = size(A,1);

if nargin < 4,
    perm = [];
else
    perm = varargin{1};
end;   
if ~isempty(perm)
    G = G(:,perm);
    if p > 0,
        A = A(:,perm);
    end;      
end;
if nargin > 4
    error('Too many input arguments.');
end;   

e = 1./d;

if p == 0

    if issparse(G)
        [fac.R,flag] = chol(G'*spdiags(e,0,m,m)*G);
    else
        [fac.R,flag] = chol(G'*(G .* e(:,ones(1,n))));
    end;
    if flag,
        fac = [];
    end;

else

    if issparse(G) &  issparse(A)
        [fac.L, fac.U, fac.P, fac.Q] = lu(...
            [ sparse(p,p), A;  A', G'*spdiags(e,0,m,m)*G ]);
    else        
        [fac.L, fac.U, fac.P] = lu(...
            [ zeros(p,p), full(A); 
              full(A)', G'*(G .* e(:,ones(1,n))) ] );
        fac.P = sparse(fac.P);              
    end;              
    if min(abs(diag(fac.U))) < RANKTOL,
         fac = [];
    end;

end;


function [x,y,z] = kkt_sol(d,G,A,fac,rx,ry,rz,varargin)

% [x,y,z] = kkt_sol(d,G,A,fac,rx,ry,rz,perm);
% [x,y,z] = kkt_sol(d,G,A,fac,rx,ry,rz,[]);
% [x,y,z] = kkt_sol(d,G,A,fac,rx,ry,rz)
%
%                    [-diag(d)  0  G ] [z]   [rz]
% solves KKT system  [   0      0  A ] [y] = [ry]
%                    [   G'     A' 0 ] [x]   [rx]
%
% with KKT matrix previously factored by kkt_fac
%
% Input arguments:
% -  d:  m-vector, with m>=1.  Must have positive elements.  
% -  G:  mxn, with m>=1 and n >= 1.
% -  A:  pxn, with p>=1, or an empty matrix
% -  fac:  output of fac = kkt_fac(d,G,A,perm) or fac = kkt_fac(d,G,A)
% -  perm:  (optional) permutation vector of length n.
%        If perm is specified, fac contains a factorization of
%
%             [  -diag(d)      0       G(:,perm) ]
%             [     0          0       A(:,perm) ]
%             [  G(:,perm)' A(:,perm)'    0      ]
%
% Output argument: solution, or x=y=z=[] if KKT matrix is singular.


if size(d,2) ~= 1
    d=d';
end;  
m = size(d,1);
if size(G,1) ~= m
    error('Dimensions of G and d do not match.');
end;  
if m < 1
    error('G must have at least one row.');
end;
n = size(G,2);
if ~isempty(A) & (size(A,2) ~= n)
    error('Dimensions of A and G do not match.');
end;
p = size(A,1);

if size(rx,2) ~= 1
    rx = rx';
end;
if size(rx,1) ~= n
    error('Length of rx does not match A, G, d.');
end;
if isempty(ry),
    ry = zeros(0,1);
end;   
if size(ry,2) ~= 1
    ry = ry';
end;
if size(ry,1) ~= p
    error('Length of ry does not match A, G, d.');
end;
if size(rz,2) ~= 1
    rz = rz';
end;
if size(rz,1) ~= m
    error('Length of rz does not match A, G, d.');
end;
if nargin < 8,
    perm = [];
else
    perm = varargin{1};
end;
if ~isempty(perm)
    G = G(:,perm);
    if p > 0
        A = A(:,perm);
    end;
    rx = rx(perm);
end;
if nargin > 8
    error('Too many input arguments.');
end;   
if isempty(fac)
    error('Matrix is singular.');
end;

if p == 0
    x = fac.R \ ( fac.R' \ ( rx + G'*(rz./d) ));
    y = zeros(0,1);
else
    if issparse(G) &  issparse(A)
        sol = fac.Q * (fac.U \ (fac.L \ (fac.P * [ry; rx+G'*(rz./d)])));
    else        
        sol = fac.U \ (fac.L \ (fac.P * [ry; rx+G'*(rz./d)]));
    end;             
    y = sol(1:p);
    x = sol(p+[1:n]);
end;
z = (G*x-rz)./d;
if ~isempty(perm)
    x(perm) = x;
end

没有评论:

发表评论