2012年5月5日星期六

Imposing Radiality Constraints in Distribution System Optimization Problems



@article{lavorato2012imposing,
  title={Imposing Radiality Constraints in Distribution System Optimization Problems},
  author={Lavorato, M. and Franco, J.F. and Rider, M.J. and Romero, R.},
  journal={Power Systems, IEEE Transactions on},
  number={99},
  pages={1--1},
  year={2012},
  publisher={IEEE}
}

set      Powerchar    Power characteristics  /Pg,Pd/      GenPchar     Generator active power characteristics  /puplim,plowlim/ set i Bus Node /1*5/ alias(i,j); set  PConNode(i)     Active power control node/1/      PGeneralNode(i) General active power node /2*5/; set ij(i,j)/     1.2     1.3     1.4     2.3     2.5     3.4     3.5     4.5/; set ji(j,i)/     1.2     1.3     1.4     2.3     2.5     3.4     3.5     4.5/; Table  Power(i,Powerchar)       Power of node    Pd   Pg 2  25   0 3  30   0 4  20   0 5  60   0 Table  GenP(i,GenPchar)  Generators active power output limits          plowlim      puplim 1        0            150 Parameters           Pd                    Active demand ;           Pd(i)= Power(i,'Pd'); display Pd; Variables           Pg(i)                 Active power output ;           Pg.up(i) = GenP(i,"puplim"); Variables           v      cost           f(i,j) brabch power;           f.up(i,j)=100; binary Variables           x(i,j) output; Equations       Pfn       Pg-Pd-Ploss=0       xfn       vfn       maxbfn_pos       maxbfn_neg ;      Pfn(i).. 0 =e= Pg(i)-Pd(i)+sum(j$ji(j,i),f(j,i))-sum(j$ij(i,j),f(i,j));      xfn.. card(i)-1 =e= sum(ij(i,j),x(i,j));      maxbfn_pos(i,j).. f.up(i,j)*x(i,j)=g= f(i,j);      maxbfn_neg(i,j).. f.up(i,j)*x(i,j)=g= -f(i,j);      vfn.. v =e= sum(ij(i,j), f(i,j)*f(i,j) ); option limrow=100, limcol=100; option MINLP=BARON; *option MINLP=SBB; *option rminlp=conopt; * option MINLP=CONOPT; * option NLP=CONOPT; Model Optimal / all /; Solve Optimal minimizing v using MINLP; *Solve Optimal minimizing v using XA; display v.l, x.l, f.l, Pg.l;

没有评论:

发表评论